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Confounding between the model covarates and causal varables (which mayor a not be indud-
ed as model covariates) is a well-known problem in regression models used in air pollution epi-
demiology. This pr is usually acknowleged but hardly ever investigatedi espedally in the
contet of neralized linear models. Using sythetic dat sets, the present sudy shows how model
overfit, udri and misfit in the presence of correted causalvariables in a Poison regression
model affet the estmated coefficients of the covarates and their confidence levs.LThe study also
shows how tis effect changs with thae rnes tifthe cvriates anxd the sample size. There is qpuali-
tative agrent between the su results and the g expressiom m the large-sample
limit o the ordinyin er models. Confonding of oarate na overfitted mode (with cvari
ates encompasing more tbha just the causal variables) does not bias the estimated coefficients but
reduces their s iin Te efft of model underfit (with some caual v les l as
covariates) or misfit (with coriates encompassing only non l ies), on the oter hand,
leads to not only erroneo estimated coeffcients but a misguided confidence, represented by large
t-values, thhat the estimt coefient are sgnificnt results of t study indicate that mod-
es which iuse only one or two air quality variables, such as partlate matter .10 pm and sulfur
dioxider probayunreliable, andlthat modes containing several correlated and toxic or poten
tially toxic air quality viables should a e investigate in order to minimize the situation of
model underfit or isi Imorkb air pollution, confunding effecs, lic timeseries studies,
epidemiological studies, generalized linear models, model misfit, Poisson regression, simulation.
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The EPA (1) recently promulgated the
National Ambient Air Quality Standards
for the mass concentrations of particulate
matter <10 pm (PM10) and <2.5 pm
(PM2.5). The key rationale for these stan-
dards came from the epidemiological stud-
ies in the past few years associating particu-
late air pollution [represented in these stud-
ies primarily by the ambient concentrations
of either the total suspended particulate
(TSP) or PM10] with daily mortality and
morbidity. Both the mortality and morbidi-
ty studies are almost exclusively ecological
time-series studies regressing the daily
events of mortality or morbidity against the
ambient air quality for given urban areas
(2). However, for many urban areas where
the same or similar data sets were reana-
lyzed, different or contradictory conclusions
often resulted (3-14). This fact highlights
the difficulty of establishing a causal rela-
tion between ambient PM concentrations at
their present levels and a given health end-
point through regression models alone.

In most existing Poisson regression mod-
els for countable data such as mortality and
morbidity, in addition to the inclusion of
some weather parameters, ambient concen-
trations of some air pollutants, often only
one (PM1O or TSP) or two (PM1O or TSP,
and SO2) so far, were included as covariates.
Models were then selected based on some
goodness-of-fit criteria. However, different

choices of covariates and different formula-
tions of the model led to different selected
models with different accompanying con-
clusions, and it is often impossible to ascer-
tain which model is more correct or reliable.
One major issue among many is the issue of
confounding or collinearity, which we take
to mean the presence of significant correla-
tion between a covariate in a regression
model and another covariate that may or
may not be causal, or a causal variable that
may or may not be a covariate in the model.
This issue is always acknowledged but
almost never investigated. In fact, after
acknowledgment of a potential confound-
ing problem, most researchers went on to
draw conclusions based on the significance
of the estimated coefficients associated with
given covariates, often oblivious of or ignor-
ing the fact that confounding can invalidate
the conclusions altogether. It is also not
often appreciated that uncovering similar
regression results for many areas does not
necessarily reduce or remove the problem of
confounding because the same confounding
problem may occur in many areas.
However, in ascertaining if PM among
many pollutants is indeed a causal agent of
daily mortality or morbidity, the problem of
confounding cannot be ignored, especially
when correlation between ambient concen-
trations of different air pollutants can be
large. Table 1 shows an example of typical

correlation coefficients among the air quality
variables and meteorological variables that
have been considered as covariates in regres-
sion studies. The data are from Pittsburgh
(Allegheny County), Pennsylvania, for the
summer and winter seasons from 1989 to
1991. The pollutants are all daily maximum
1-hr concentrations, with the exception of
PM1O, which is a daily-averaged concentra-
tion. The meteorological variables are for the
hour of the day when the dry-bulb tempera-
ture reaches the maximum. Table 1 shows
that relatively high correlation can exist
between different air quality and meteoro-
logical variables, and that the correlation is
seasonally dependent. For example, the cor-
relation between 03 and PM1O is high in the
summer but very low in the winter. On the
other hand, the correlation between CO and
PM0O is moderately high in the summer and
quite high in the winter. Also, both 03 and
PM1O are well correlated with dry-bulb tem-
perature in the summer but less well corre-
lated in the winter.

Depending on the choice of covariates in
a model, different types of model biases can
occur. They include underfitting (with some
causal variables being excluded as covari-
ates), overfitting (with covariates including
more than just the causal variables) and mis-
fitting (with all covariates being noncausal
variables). The effect of such a model bias
on the estimated coefficients of the chosen
covariates in an ordinary least squares (OLS)
linear model was briefly described by Seber
(15). Chen and Zhang (16) have provided
the means and variances of the estimated
coefficients in the large-sample limit (num-
ber of observations being much greater than
one) for a biased OLS model. However, no
closed form is available to describe the
impact of model bias due to underfitting,
overfitting, and misfitting of covariates on
the estimated coefficients of a generalized
linear model (GLM) (17). This knowledge
has great theoretical and practical impor-
tance in view of the role of Poisson regres-
sion in the PM epidemiological studies. It is
difficult to study the confounding effects
because no one knows what a correct model
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Table 1. Correlation coefficient among the ambient pollumt concentadons and weather parameters for
Pittsburgh, Pennsylvania, 199-1991 (summer/winter in the upper rig/lower left, relative to the diagonal)

CO ND °3 -- so PMl TempDry DewPt_CO NO~~2 3

CO 0.61 0.28 0.44 0.44 0.15 0.03
NO2 0.76 0.56 0.46 0.62 0.48 0.03
0 -0.05 0.11 0.30 0.66 0.70 0.15
S&2 0.40 0.41 -0.09 Ii) 0.43 0.17 -0.04
PM10 0.72 0.73 -0.06 0.54 0.58 0.39
TempDry 0.31 0.32 0.34 0.09 0.30 Ws 0.46
DewPt 0.15 0.00 0.07 -0.09 0.04 0.74
Abbreviafions: PMI10, particulate matter s10 pm; TempDry, dry-bulb temperature; Dew^ dew point

should be. However, synthetic data sets
based on a known causal model can serve as
a correct model for the study. The purpose
of this paper is to investigate how model
bias impacts the estimated coefficients and,
more important, how covariate confound-
ing, range of fluctuation of the covariates,
and sample size affect this impact in a
Poisson regression, assuming that we know
a priori the exact causal relationship. Our
approach is to construct synthetic data sets
of a Poisson variate whose mean is deter-
mined by a known, exact linear model con-
taining no more than two covariates that
have a range of correlation coefficients
between them. We then estimate the coeffi-
cients of the covariates for a Poisson regres-
sion model, biased or otherwise, applied to
the synthetic data sets. In addition, the
range of fluctuation of one of the covariates
and the sample size will also be varied to see
how they influence the t-values of the esti-
mated coefficients. Serial correlation of the
dependent and independent variables is not
considered, as its inclusion would compli-
cate the synthetic data set generation and
would not add any new insight or alter the
conclusion significantly. Seasonal cycles,
long-term trends, and measurement error
are not explicitly considered, as they are not
a necessary component of confounding.
However, they are relevant because they
influence the correlation between the differ-
ent air quality and meteorological variables,
as well as the ranges of the variables.
Therefore, they influence the extent of con-
founding. We also present the closed form
results for the OLS models and describe the
protocol for the construction of the synthet-
ic data sets and the results of different
Poisson regressions applied to the data sets.

Confounding Effects of
Covariates in Ordinary Linear
Models
Before the simulation study of GLM, we
present a brief review of the results extract-
ed from Chen and Zhang (16). Consider a
linear regression model containing p
covariates, x,, (induding x, = 1),

p
y = XI3jxj + E.

j=l (1)

Here, y is the dependent variable; X = (x1,
...,xp)T is the covariate vector, with the
corresponding expectation E(X) = pi and
variance matrix VAR(X) = E >0; i, j = 1,
... p are the coefficients of the covariates; £
is the random error, independent of X,
with F() = 0; va?(p) = a2. The OLS esti-
mator of,B= (,B,, ...,1p)Tis

P=[XTX X Ty, (2)

where Y = (y1 ., y)T. X = (xi,),xp, n is
the number of observations or the sample
size.

Unbiased. If the data are actually gener-
ated from a model identical to Equation 1,
we call the equation unbiased for the data.
With these assumptions, we have in the
large-sample limit (n> >1) the expectation
and variance of the estimated coefficients,

E(') = 13,

0p- -( (3)

As a special case with the simple linear
model,

y =aO+px+e,

we have
E(a)=a,E(fi)=,6,

var(s)- n
{i+ 42J (() n- n

2

(7)

where E(x) = g and var(x) = 11 .

For the case of two covariates without
an intercept,

y = Plxl + P2X2 +E, (8)
we have

(^)a2var(,bi) 2

22 + FL2X 17~~~2 2

[(
2

- p2)q1q2 + (1g2 +n2-

(10)

var(P2) 2

[(
2

- p2)2 + 2+ 2 - 2pr1 1h,±11I2)1
(11)

where E(x1) = p,, E(x2) = 12X var(xl) =
var(x2) = 112, and cov(xl, x2) = P11'121 with
p being the correlation coefficient between
x1 and x2.

Biasedt If the data are generated from
the model

y = P3x1+e
j=1 (12)

with t. p, we call the model (Eq. 1) biased
for the data. Consider the following two
biased cases:

For t >p, or in the case of a model
underfit, we have in the large-sample limit,

E(') - , + VX'VVy,p
(13)

x(vz -VzxVx VxZ yT )]VX1

(14)

where Vxwhr X= E(XXT), VZ= E(ZZT), VZX=
E(ZXT), and V -z= E(XZT) with Z=
(xp+ I, -,-xt) andy=(Pp~1 '... )

For t = 2 and p = 1, X and Z are both
one-dimensional random variables. We have

(p) 2 2'lX + tx (15)
(5)

var(~) 41 +

(6) [8~~~2_F-(P4X4 +g.z) +g2,R)-1] 2

r2 + g2

(16)

where E(x) = g, E(z) = p_, var(x) =- 2

var(z) = 112 and cov(x, z) = pixllre
For t <p, or in the case of a model over-

fit, we have in the large-sample limit

E(Q1) = PI, E('2) = P2, E(p) =(plxp, lx(t-p))
(9) (17)
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v(p) VX. (18)

For t= 1 andp = 2, we have

E(13) =f, E(12) = .
(19)

For the variances, we have the same results
as in Equations 10 and 1 1:

var(i ) -21

(2 +g2)
X[(1_p2)(q 2

+ 2

+2-+2(q22 + n2j]

var(Q2) -2

X [(i - 2) 4+ (21)2 + 12
[(1p_p)U2 + +-221 2pnh?in29 1112)

(21)

Misfit. If the data are generated by X,
alone but we fit the model using X2, then
we have in the large-sample limit

(f) x2vx2x A (22)

[ tr (VX jXiVX xX(pi Tf3)]V,-1

(23)

where Vx = E(XixT). Vx2 = E(X2X2)T
VXX2 = E(1X2 ), and Vx2xI = E(X2XT).

If X, and X2 are one-dimensional vari-
ables, we have, again in the large-sample
limit,

E2) PTh1112 + 111112

E(132) = PU,02 +112 (24)

var(I2) --X{X 2

24 + g2 -(4+ 21)2(172 + g2) ]1P2[fl7+h1 1(P?22171 +ii2j(2+2 1
+~~~~~2+g72 2

where E(xl) = 11 E(x2) = 12' var(X1) = 1'
var(x2) = rj22, and cov(x, x2) = PTl1Tl2

The above results show a complicated
relation between the estimated coefficients,
together with their variances, of a biased
linear model and the true coefficients and

covariance matrices of the explanatory vari-
ables. It would be rather hopeless to find a
set of analytical expressions for the compa-
rable situations in a GLM.

Protocol for the Construction
of Synthetic Data Sets
To keep the scope of work manageable in
the simulations, we considered no more
than two covariates. For example, the two
covariates, xl and x2, could correspond to
PMIO and CO, respectively. The dependent
variable, y, could be considered as the daily
mortality. In generating the synthetic data,
we assumed an exact, causal, log-linear rela-
tionship between y and xi, with the coeffi-
cients for xi being J3, = 0.0005 and P2 =
0.005. These are hypothetical values used
for illustrative purposes only. Ifwe assumed
the units of micrograms per cubic meter
and parts per million by volume (ppmV),
respectively, for xl and x2, then PI = 0.0005
corresponds to a relative risk of 1.05 or a
mortality increase of 5% per 100 pg/m3
increase in PM1O, whereas fl2= 0.005 corre-
sponds to a relative risk of 1.005 or a mor-
tality increase of 0.5% per ppmV increase
in CO. We further assumed the intercept,
a, of the exact log-linear model to be
3.132. This value corresponds to an average
daily mortality of about 23.

Both xl and x2 were assumed to follow a
bivariate lognormal distribution with means
and standard deviations (SDs) extracted
from the logarithmically transformed PM1O
and CO data for Pittsburgh during
1989-1991. In the logarithmic space, the
corresponding means were 3.5 and 0.87 and
the corresponding SDs were 0.619 and
0.475 for x1 and x2, respectively. In the con-
centration space, the above information
essentially recovers the observed means of
40.22 pg/m3 and 2.68 ppmV, and the
observed SDs of 26.25 pg/m3 and 1.41
ppmV, for PM1O and CO, respectively. In
the generation of the synthetic data sets, the
SD of xl in the logarithmic space, denoted

was held fixed at 0.6 while that of x2,
denoted rn2, was allowed to vary from 0.2 to
1.0. With both n, and 2 being <1, they are
roughly proportional to the corresponding
SDs in the concentration space. Note that
because of the logarithmic transformation,
the 1js here are not identical to the ils
described for OLMs. As a measure of con-
founding between the two variates, the corre-
lation coefficient, p, between the variates in
the logarithmic space was also allowed to
vary. Again, because of the small (but realis-
tic) values chosen for both il and Ti2, the
correlation coefficients between the two vari-
ates in the concentration space are typically
no more than 10% less than p for p = 0.5
and 0.9 and are essentially 0 for p = 0.

Because the correlation coefficients between
any two explanatory variables in Table 1 are
generally positive, only positive ps were con-
sidered in our simulations. For each realiza-
tion, the values of x1 and x2 in the logarith-
mic space were generated using an S-Plus
random number generator (MathSoft,
Seattle, WA) for a bivariate normal distribu-
tion on an IBM RS6000 mainframe. The
antilogarithms of these values were used to
determine the value, m, of an exact model,
log(m) = a + Plxl + P2x2. In fact, m serves as
the mean of the daily mortality. With this
mean, the Poisson variate, y, was generated
using the S-Plus random number generator
for the Poisson distribution. A collection ofy
values with a sample size, n, constitutes the
synthetic data set to be used for Poisson
regression:

log[E(y)] = a + Plxl + 2x2 (26)

The sample size was also allowed to vary
from 365 to 7 x 365, corresponding to a
period of 1-7 years. To assure that the
results of the Poisson regressions were stable,
the procedure for each synthetic data set
generation and the subsequent regression
was performed for a total of 100 times. The
means of the 100 repetitions are reported in
"Results." No significant differences were
found between the means with 100 repeti-
tions and those with 1,000 repetitions.

In the Poisson regression study, the
unbiased regression model contained both
x1 and x2, as in the exact model. Several
biased regression models were considered.
For the case of model underfit, the synthet-
ic data sets were constructed using the exact
model containing both x1 and x2; the
regression model assumed only x1 as the
covariate. For model overfit, the synthetic
data sets were constructed using only xl,
whereas the regression model assumed both
xI and x2 to be the covariates. For model
misfit, two cases were considered. First, the
synthetic data sets were based on only xl;
the regression model contained only x2 as
the covariate. Second, only x2 was used in
the synthetic data sets; only x1 was the
covariate in the regression. The latter is not
equivalent to the former because we always
allowed only the range of x2 to vary.

Results
The impact of 1) confounding or correla-
tion, p, between xl and x2; 2) the data range
or SD, Ti2, of x2; and 3) the sample size, n,
on the outcome of the Poisson regression
will be presented in the same order as
described for OLMs. The outcome is repre-
sented by the estimates of the coefficients,
E(A), and their respective t-values. A t-value
>2 is considered significant. In all cases, the
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Figure 3. Behavior of t(A1) as a function of n and
.2, given p - 0.5, for an underfitting Poisson
regression containing xi as the covariate to
describe data created from an exact model con-
taining xl and x2.

365 3x365 5x365 7x365
a

365 3x 365 5x 365 7 x 365
a

Figure 1. Behavior of t(d) and diJ2) as a function of n (numbe
log x2, representing the range of the x2 covariate) and p (col
x2 and comparable to that between xl and x2) for an unbiasec
ates as the exact model.

--9

P112

Figure 2. Behavior of Eaf1) and ,fii) as a function of pR2, and
taining xl as the covariate to describe data created from an e

overdispersion parameter, estimated as the diffe]
residual deviance divided by the model mod(
degrees of freedom, is within 1% of 1. for t]

Unbiased Neither E(,31) nor E(,k) are t(
impacted by the correlation between the two quali
covariates. The estimates are not significantly variai

3 increases in Equations 10 and 11 for the
2

IOLMs. Also, for the parameters used in the
exact model, Equation 10 indicates a weak

_I b dependence of t(P1) on 112, whereas Equation
3 11 indicates an essentially linear dependence

oft(A2) onr2. Figure 1 shows both t(PI) and
n A 't ' '42) as a function of n, p, and r12. From

1.5 Figure 1, one sees that the dependence
_.0 of 2) on rn2 is not linear.

1.5 11 _ |1 = There is no major qualitative difference
in the behavior of the estimated coefficients

!.5 ......--------------------------between the OLM and the Poisson regres-
sion when all causal variables are covariates
in the regression model. An unbiased regres-
sion model can recover the estimated coeffi-
cients of the covariates. But if the correlation
among the covariates increases, the signifi-
cance of the estimated coefficients decreases.385 3 x 385 5 x 365 7x 385 Biased. In the underfit case, the synthet-
ic data sets contain the effect of both xl and

Nrof observations), j2 (standard deviation of x2, whereas the regression model contains
rrelation coefficient between log xl and log onl x as the covariate. In the ordina lin
d Poisson regression using the same covari- 1

ear regression, Equation 15 indicates that
E(Pi) increases with p and 112, or more pre-
cisely, E(P1) is asymptotically PI plus a term

0 . ; that is linearly related to pq2 This is quali-
8 tatively consistent with a nearly linear rela-

_ _ _ _ _ tnon observed in the Poisson regression (Fig.
_ _ _ _ 2). The estimated coefficient departs signifi-

cantly from the PI of the exact model as pw ~ ~ ~ ~~~ ~ ~~~~~~,d,c1e.s-_ _ _ and 112 increase. The variance of,2 decreas-
es with p in the asymptotic expression

2 v - ~ _ _ (Equation 16) for the OLM. This is again
consistent with the simulation result that

i1)increases with p. In addition t(, )
0 0.2 0.4 0.6 0.8 1 also increases with 112, and this increase is

P112 enhanced by an increasing p (Fig. 2). As the
sample size, n, increases, t(,81) increases as

n for an underfitting Poisson regression con- well (Figs. 2, 3)i. If x were used in the
.xact model containing xl and x2. modl, tn22n

regression model, then based on Equations
15 and 16 and the parameters of the exact

rent from the coefficients of the exact model, one would expect E(2) to be essen-
el. This is consistent with Equation 9 tially proportional to P/n2 and t(J2) to
he OLMs. However, both t(P1) and again increase with p.
decrease with increasing p. This is The above result has a profound impli-

itatively consistent with the increasing cation insofar as the PM mortality studies
nce of the estimated coefficients when p are concerned. Underfitting is very likely
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0.025

0.020

7 x 365
n

Figure 4. Behavior of dp,) as a function of n and p
given j2 = 0.2, for an overfitting Poisson regression
containing xl and x2 as the covariates to describe
data created from an exact model containing xl.

when the number of covariates used is
small (e.g., one or two). If a causal variable
such as CO is missing in the regression
model and the variable is highly correlated
with a covariate (e.g., PM) in the regression
model, then the regression model will indi-
cate a strong but erroneous association of
the dependent variable or effect (the daily
mortality, for example) with the covariate.
In fact, the estimated coefficient of the
covariate will be compromised by the size
of the actual coefficient of the missing vari-
able, the range of the missing variable, as
well as the magnitude of the correlation
coefficient between the covariate and the
missing variable. The t-value of the esti-
mated coefficient also increases with the
correlation coefficient and the range of the
missing variable. In addition, increasing the
sample size (to several years of data, for
example) also increases the t-value, actually
making the erroneous association appear
more convincing.

In the overfit case, the synthetic data sets
were constructed using only x1; the regres-
sion model contains both x1 and x2 as the
covariates. In agreement with Equation 19
for the ordinary linear regression, the esti-
mated coefficients of both covariates are not
significantly different from their exact values,
being zero for E(k2). They are not affected
by the correlation coefficient between the
two covariates. The t(P1), on the other
hand, decreases with increasing p, and does
not depend strongly on 2. Figure 4 shows
t(P1) as a function of p and n, with TI2 held
constant at 0.2. As expected, t(k) is essen-
tially zero. If the exact model contains only
x2, one expects t(P3I) to be zero and t(k) to
be increasing with TI2 and decreasing with p.

The above result indicates that overfit-
ting should not lead to a serious bias in the
estimated coefficients of the covariates, but
the correlation between the causal and
redundant covariates will reduce the signif-
icance of the estimated covariates.

Misfit. In the first misfit case, xi was
used in the exact model and x2 was the

Figure 5. Behavior of E,,2 as a function of n and
P/112 for a misfitting Poisson regression contain-
ing x2 as the covariate to describe data created
from an exact model containing xl.
covariate in the regression model. Even
though x2 plays no role in the dependent
variable of the synthetic data sets in the
regression model x2 influences E(732) and
t (A2) through p. For the ordinary linear
regression, Equation 24 shows that E(P2)
increases with increasing p and decreases
with increasing TI2. Figure 5 shows E(P2)
as a function of P/TI2. The significance of
the estimate, 42(), increases with p and n,
but, interestingly, not withnT2 (Fig. 6).

In the second misfit case, x2 was used in
the exact model and xl was the covariate in
the regression model. In this case, the varia-
tion in T12 directly impacts the dependent
variable in the synthetic data sets. Figure 7
shows E(,A) and t(,A) as an increasing
function of PT12. Again, no causal meaning
can be attached to the magnitude of the esti-
mated ~oefficient. Even so, Figure 8 shows
that t (p3) can be large and increasing with
p and T12, in contrast with t(P2) above,
which has little or no dependence on 112'

Model misfit is agan a likely occurrence.
The result of the misfit is a set of totally mean-
ingless estimated coefficients, yet with increas-
ing significance as the sample size and the
ranges of the missing causal variables increase
and as the correlation between the covariates
and the true causal variables increases. The
potential for misleading inference in model
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R

Figure 6. Behavior of t(02) as a function of n, 1121
and p for a misfitting Poisson regression contain-
ing x2 as the covariate to describe data created
from an exact model containing xl.

misfit in epidemiological studies cannot be
overemphasized.
Conclusion
Using synthetic data sets, the present study
shows the impact of confounding on the

- 3

2

-1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6

P112 P712
0.8 1

Figure 7. Behavior of El,i1l and t(,i) as a function of PR2 and n for a misfitting Poisson regression contain-
ing xl as the covariate to describe data created from an exact model containing x2.
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Figure 8. Behavior of 9N as a function of n, n2 and p for a misfitting Poisson regression containing xl as the covariate to describe data created from an exact
model containing x2.

estimated coefficients of the covariates and the
significance of the estimated coefficients in a
generalized linear model. The study also shows
how this impact changes with the ranges of the
covariates and the sample size. There is qualita-
tive agreement between the study results and
the corresponding expressions for the large-
sample limit in the ordinary linear models. The
study results are highly relevant to the present
active investigations of an association between
ambient air pollutant concentrations (especial-
ly PM) and daily mortality and morbidity.

Modeling bias is a likely occurrence when
regression models are used in an effort to iden-
tify the causes of a health outcome in an
uncontrolled environment. This occurrence
can lead to seriously erroneous conclusions
when confounding exists between the relevant
covariates or between some covariates and
causal variables that may or may not be pre-
sent in the model. The main effect of con-
founding for model overfit is a reduction in
the significance of the estimated coefficients.
The effect of model underfit or misfit (a more
common occurrence), on the other hand,
leads not only to erroneous estimated coeffi-
cients, but a misguided confidence, represent-
ed by large t-values, that the estimated coeffi-
cients are significant. The results of this study
indicate that models that use only one or two
air quality variables such as PMIO and SO2 are

likely unreliable, and that models containing
several correlated and toxic or potentially toxic
air quality variables should also be investigated
in order to minimize the situation of model
underfit or misfit. It is also possible that mod-
els containing more pollutants as covariates
may have estimated coefficients that are
unphysical or counter-intuitive. Such a situa-
tion would call for controlled experiments to
establish a causal relation between a pollutant
or multiple pollutants and a health end point.
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